Mutational analysis of the chemoreceptor-coupling domain of the Escherichia coli chemotaxis signaling kinase CheA.

نویسندگان

  • Jinshi Zhao
  • John S Parkinson
چکیده

During chemotactic signaling by Escherichia coli, autophosphorylation of the histidine kinase CheA is coupled to chemoreceptor control by the CheW protein, which interacts with the C-terminal P5 domain of CheA. To identify P5 determinants important for CheW binding and receptor coupling control, we isolated and characterized a series of P5 missense mutants. The mutants fell into four phenotypic groups on the basis of in vivo behavioral and protein stability tests and in vitro assays with purified mutant proteins. Group 1 mutants exhibited autophosphorylation and receptor-coupling defects, and their CheA proteins were subject to relatively rapid degradation in vivo. Group 1 mutations were located at hydrophobic residues in P5 subdomain 2 and most likely caused folding defects. Group 2 mutants made stable CheA proteins with normal autophosphorylation ability but with defects in CheW binding and in receptor-mediated activation of CheA autophosphorylation. Their mutations affected residues in P5 subdomain 1 near the interface with the CheA dimerization (P3) and ATP-binding (P4) domains. Mutant proteins of group 3 were normal in all tests yet could not support chemotaxis, suggesting that P5 has one or more important but still unknown signaling functions. Group 4 mutant proteins were specifically defective in receptor-mediated deactivation control. The group 4 mutations were located in P5 subdomain 1 at the P3/P3' interface. We conclude that P5 subdomain 1 is important for CheW binding and for receptor coupling control and that these processes may require substantial motions of the P5 domain relative to the neighboring P3 and P4 domains of CheA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cysteine-scanning analysis of the chemoreceptor-coupling domain of the Escherichia coli chemotaxis signaling kinase CheA.

The C-terminal P5 domain of the histidine kinase CheA is essential for coupling CheA autophosphorylation activity to chemoreceptor control through a binding interaction with the CheW protein. To locate P5 determinants critical for CheW binding and chemoreceptor control, we surveyed cysteine replacements at 39 residues predicted to be at or near the P5 surface in Escherichia coli CheA. Two-third...

متن کامل

Mutational analysis of the P1 phosphorylation domain in Escherichia coli CheA, the signaling kinase for chemotaxis.

The histidine autokinase CheA functions as the central processing unit in the Escherichia coli chemotaxis signaling machinery. CheA receives autophosphorylation control inputs from chemoreceptors and in turn regulates the flux of signaling phosphates to the CheY and CheB response regulator proteins. Phospho-CheY changes the direction of flagellar rotation; phospho-CheB covalently modifies recep...

متن کامل

Constitutively Signaling Fragments of Tsr, the E. coli Serine Chemoreceptor

Tsr, the serine chemoreceptor of E. coli, has two signaling modes. One augments clockwise (CW) flagellar rotation, the other augments counter-clockwise (CCW) rotation. To identify the portion of the Tsr molecule responsible for these activities, we isolated soluble fragments of the Tsr cytoplasmic domain that could alter the flagellar rotation patterns of unstimulated wild-type cells. Residues ...

متن کامل

Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.

The chemoreceptors of Escherichia coli localize to the cell poles and form a highly ordered array in concert with the CheA kinase and the CheW coupling factor. However, a high-resolution structure of the array has been lacking, and the molecular basis of array assembly has thus remained elusive. Here, we use cryoelectron tomography of flagellated E. coli minicells to derive a 3D map of the inta...

متن کامل

Chemotactic signaling by an Escherichia coli CheA mutant that lacks the binding domain for phosphoacceptor partners.

CheA is a multidomain histidine kinase for chemotaxis in Escherichia coli. CheA autophosphorylates through interaction of its N-terminal phosphorylation site domain (P1) with its central dimerization (P3) and ATP-binding (P4) domains. This activity is modulated through the C-terminal P5 domain, which couples CheA to chemoreceptor control. CheA phosphoryl groups are donated to two response regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 9  شماره 

صفحات  -

تاریخ انتشار 2006